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ABSTRACT

Republican candidates often receive between 30% and 40% of the two-way vote share in statewide elections in
Massachusetts. For the last three Census cycles, Massachusetts has held 9–10 seats in the House of Representa-
tives, which means that a district can be won with as little as six percent of the statewide vote. Putting these two
facts together, it is striking that a Massachusetts Republican has not won a seat in the U.S. House of Represen-
tatives since 1994. We argue that the underperformance of Republicans in Massachusetts is not attributable to
gerrymandering, nor to the failure of Republicans to field House candidates, but is a structural mathematical fea-
ture of the actual distribution of votes observable in some recent elections. Several of these elections have a re-
markable property in their vote patterns: Republican votes clear 30%, but are distributed so uniformly that they
are locked out of the possibility of representation. Though there are more ways of building a valid districting plan
than there are particles in the galaxy, every single one of them would produce a 9–0 Democratic delegation.
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INTRODUCTION

G errymandering is the practice of using the
formation of electoral districts to create a rep-

resentational advantage for some subsets of the pop-

ulation, or to favor certain kinds of candidates. In
recent years, gerrymandering has received increas-
ing levels of attention and public indignation.
There are essentially two indicators that are taken
by the public and by many commentators as red
flags for gerrymandering: bizarre shapes and dis-

proportional outcomes. For instance, the enacted
113th congressional districting plan in Pennsylvania
contained a notorious district nicknamed ‘‘Goofy
kicking Donald Duck,’’ whose contorted shape was
taken by many as prima facie evidence of redistrict-
ing abuse. Under this map, Pennsylvania elections
exhibited nearly 50–50 splits in party preference,
while Republicans held 13 out of 18 seats, or over
72% of the House representation. While there is in-
deed compelling evidence that Pennsylvania was
gerrymandered in a partisan manner (Pegden 2017;
Duchin 2018), this fact is not established by either
shapes or disproportions alone. In this article, we
show that there can also exist benign and structural
obstructions to securing representation that have to
do with not just the number of votes but how they
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are distributed around the state. We mean this in the
technical sense of ‘‘obstruction’’—in a depar-
ture from much of the political science literature,
we are not discussing a tendency or likelihood,
but a mathematical certainty of securing zero repre-
sentation.

This article is framed to study a ‘‘riddle’’ about
Republican voting patterns in Massachusetts: why

is 1/3 of the vote proving insufficient to secure any

representation? By contrast, the classic ‘‘cube law’’
predicts 1/9 of the seats, the logit model from
Chen and Rodden (2016) predicts roughly 2/9 of
the seats, and proportional representation would
be 1/3 of the seats for Republicans in this situation.
In fact, the partisan lopsidedness of voting in Mas-
sachusetts is in some ways comparable to that in
several other states of similar size (e.g., Arizona,
Maryland, and Tennessee have comparable U.S.
Senate statistics1) but none of those other states
has ever sent a one-party delegation to the House
at any point in the last 20 years, while Massachu-
setts does so in every election. The core of our anal-
ysis is a rigorous proof that certain actual observed
voting patterns guarantee this lockout effect, re-
gardless of the districting plan. This illustrates the
intuitive principle that uniformity itself can block

desired representational outcomes for a group in

the numerical minority (like Republicans in Massa-
chusetts), considering both the numbers and the
geometry. Though this is mathematically obvious
when taken to an extreme, exhibiting actual voting
patterns with this level of uniformity is a novel
finding.

Massachusetts is one striking case in point, but
the broader message is that once the rules have
been set, it becomes a scientific question to study
the breadth of partisan outcomes left available to
the districters. This case study describes a surprising
limitation on the power to control the representa-
tional outcome. In other cases there will be other
surprises, such as an extremely wide latitude of
seats that a party can secure with a given pattern
of votes by carefully constructing the district lines,
or simply a baseline of seat outcomes in a non-
intuitive range. This article contributes to the
emerging viewpoint that it is only legitimate to
compare an observed partisan outcome against
the backdrop of actual possibility.2

It is very important that we state clearly that this
analysis rests on the study of votes and not voters.
We make no claims about the true baseline partisan-

ship of the people of Massachusetts, but rather we
fix particular election outcome data, one race at a
time, and vary district lines. For instance, Massa-
chusetts voters are clearly willing to elect Republi-
can governors, and have done so in three of five
elections since 2000. We focus our study on presi-
dential and U.S. Senate votes, with no attempt to
control for incumbency or other factors, because
they give an ample supply of instances with R
share in the 30%–40% range in recent years, and
the article is focused on how the distributional ef-
fects of cast votes interact with the ability to gerry-
mander in that range.

Numerical uniformity. We use the phrase ‘‘numer-
ical uniformity’’ to describe a situation in which the
vote shares across the building-block units are ex-
tremely consistent. In the second section, we examine
the numerical distribution of votes in 13 statewide
elections in Massachusetts, showing that for five of
them, the numbers alone make it literally impossible
to build a R-favoring collection of towns or precincts
with enough population to be a congressional dis-
trict. Because this type of analysis is run on the
numbers only, this result is very strong: no district-
sized grouping can be formed, even without requir-
ing contiguity, compactness, or any other spatial
constraint on districting. The reason is that elections
in which Republicans are locked out exhibit ex-
tremely low variance in the town- and precinct-
level voting results.3 At the very extreme, you
could imagine that Republicans have 35% of the
vote statewide, and in each town, and in each pre-
cinct—and the reality is closer to that extreme
than one might guess. In particular, even in some
elections in which a Republican received 30%–
40% of the overall vote, the R vote share rarely
exceeded 50% in any precinct, leaving not enough
R-favoring precincts to assemble into a grouping
of the size of a congressional district.

1No two states have exactly matched voting data, but all four of
these have a Senate tilt in the 61%–63% range, a consistent
presidential tilt in the same direction, and 8–10 House seats
over the last two Census cycles. See GitHub (2018), <https://
github.com/gerrymandr/party-tilt>, for Senate data. Uncon-
tested congressional races make that vote data unsuitable to
compare directly.
2J. Chen, W. Cho, M. Duchin, J. Mattingly, and W. Pegden have
all recently supplied expert reports to that effect for legal action
in states from Florida to Pennsylvania to Wisconsin to Ohio to
North Carolina.
3Note that this is the variance of the dataset itself, not of a fitted
distribution.
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Geometric uniformity. On the other hand, ‘‘geo-
metric uniformity’’ describes a situation in which
partisan preference does not correlate strongly to lo-
cation within the state, reflected in the absence of
partisan enclaves or clusters. In the third section
we will add a spatial component to our analysis.
Even when it is numerically feasible to collect
enough precincts to form an R-favoring district,
the precincts may not be spatially located in such
a way that this can be accomplished in a connected
(i.e., contiguous) fashion. We first show visualiza-
tions that illustrate the lack of a Republican enclave
in the low-variance elections, suggesting low corre-
lation between location and partisanship in these
Massachusetts elections.4 To corroborate this, we
compute clustering scores (which measure segrega-
tion of Republican votes from Democratic votes).
We find that the actual vote distributions in 2000–
2010 have clustering levels that are similar to
those that would be observed if placing the Repub-
lican votes by drawing randomly from a uniform
distribution around the state, but that clustering
has increased over time, which suggests directions
for future work that relates vote clustering to district
shape criteria. Geometric uniformity may be con-
tributing to partisan underperformance above and
beyond numerical uniformity, and focused study
of that effect on its own will be quite valuable, but
it does not drive the effect that we observe here.

In short, the conclusion is that extreme represen-
tational outcomes are not always attributable to
gerrymandering, nor to spatial clustering in the ar-
rangement of voters from either party. Generally,
counterintuitive limitations on representation can
emerge from a complicated interplay of the numer-
ical and spatial distribution of voter preferences; in
the case of Massachusetts, the numerical distribu-
tion is so uniform that it makes the spatiality insig-
nificant. The effects on representation of the
distribution (and not just the share) of votes is a dif-
ficult mathematical question and is richly worthy of
further study.

While public observers may expect proportional
representation as a matter of fairness, even seasoned
political scientists have often measured fairness in
terms of universal representational indices. For in-
stance, the efficiency gap, or EG, can be described
as measuring parity of wasted votes, but is funda-
mentally measuring whether the seat share S is
close to 2V – 1/2, where V is the vote share. The ef-
ficiency gap, EG = 2V – S – 1/2, has been argued to

flag a legally actionable gerrymander when its mag-
nitude is more than 8%. But the Massachusetts data
contain five actual vote distributions (Pres 00, Pres
04, Sen 06, Pres 08, Sen 08) for which even an om-
niscient redistricter with the honorable goal of
EG = 0 could not succeed: not a single one of the
many quintillions of possible nine-district plans
has an efficiency gap below 11% in any of those
five races. This shows that finding a reasonable
baseline to decide when gerrymandering has oc-
curred is a subtler problem than has so far been ap-
preciated in the public discourse or in some of the
mainstream political science literature. A broader
and more detailed review of the literature can be
found below in the subsection titled ‘‘Relationship
to previous literature.’’

Data

Massachusetts is home to about 2%–3% of the
nation’s population, with 6,349,097 people in the
2000 Census and 6,547,629 people in 2010. After
the 2010 Census, the number of congressional dele-
gates apportioned to Massachusetts dropped from
10 to 9 because the state’s population growth did
not keep pace with the country’s.

Massachusetts is made up of 351 jurisdictions
that we will call towns (also written in some places
as townships or municipalities), which have not
changed over the timespan covered here. Towns
do not overlap, and they completely cover the
state; in this language, cities are large towns. We
obtained a town shapefile from MassGIS that has
population attributes from the Census (MassGIS
2019).

Each town is subdivided into some number of
precincts—the level at which election results are
reported—ranging in number from 2,166 in 2002
to 2,174 in 2016 according to the Secretary of
State’s database (Massachusetts Secretary of State
2019). In 2016, 125 towns were not subdivided
(the town equals one precinct), and at the other ex-
treme, Boston was made up of 254 precincts, fol-
lowed by Springfield with 64. Note that the
precincts used to administer actual elections are
similar but not identical to Voting Tabulation Dis-
tricts or VTDs, which are snapshots of precincts
reported by the Census Bureau every ten years

4In physics terms, partisanship has low entropy in Massachu-
setts.
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(U.S. Census Bureau 2016). The Secretary of
State’s office provided us with a state-modified
VTD shapefile from 2010 and directed us to Census
resources that cover the earlier period. Unfortu-
nately, small changes to precincts are common be-
tween elections. We cleaned the data to obtain
precinct shapefiles that can be held constant over
Census cycles, which involves making a small num-
ber of merges. This produced two shapefiles: one
with 2,156 precincts and 2002–10 election results,
and one with 2,151 precincts and 2012–16 election
results.

In the tables below, the cast vote data comes from
the Secretary of State’s website (Massachusetts Sec-
retary of State 2019). They offer town-level election
results back to the year 2000 and much earlier, but
precinct-level results only back to 2002. For popula-
tion numbers, Census 2000 population figures were
used for elections taking place 2000–08, and Census
2010 for 2010–16. Town-level population was in-
cluded in the MassGIS data. The Secretary of
State’s shapefile included VTD population numbers
with a nearly exact name match to the tabular data; a
script was only needed to switch from a multi-
column format to a single-column format, and the
very few non-exact matches were handled by hand
with no ambiguity by human standards. We double-
checked the population data against the Census
Application Programming Interface (API) to be
confident in its quality. For the six elections
(2002–10) not covered by that data, we used a py-
thon preprocessing tool to compare the shapefiles
of census blocks and precincts (Metric Geometry
and Gerrymandering Group 2019c). This computes
the assignments of blocks to precincts and aggre-
gates block population up to precincts.

All of our data, together with scripts needed to
run the various algorithms described here, can be
found in the public GitHub repositories of the Vot-
ing Rights Data Institute (Metric Geometry and
Gerrymandering Group 2019a, 2019b, 2019c).

Setup choices: Election data, number of districts,

smallest units, constraints

In order to illustrate this effects of uniformity ob-
served in real voting data, we run a districting-
feasibility analysis (described in full detail in the
Appendix) on election results from 13 presidential
and U.S. Senate elections in Massachusetts. Endog-
enous (congressional) election results are not con-

sidered here because many of the recent races are
uncontested. For example, in the 2016 U.S. House
election, five out of nine districts had no Republican
who filed to run (Ballotpedia 2016). Therefore, two-
way vote share analysis would not be meaningful
for these races, though we note that our focus on
Republican share of 30%–40% is generous with re-
spect to available congressional data. The analysis
could certainly be extended to other statewide races,
including governor, attorney general, and secretary
of state if desired; we chose a collection of races
that demonstrates interesting distributional effects
in the 30%–40% range of Republican share.

Many political scientists have debated whether
statewide races are good predictors of congressional
voting patterns, and if so, which ones are most
predictive. That debate is beside the point for this
analysis, which is focused on the range of represen-
tational outcomes that are possible for given natu-
ralistically observed partisan voting patterns. We
will also choose to analyze the seat share possible
out of nine congressional districts for the sake of
consistency, even though our timespan of electoral
data includes a period over which the apportionment
varied between nine and ten. Neither decision blunts
the impact of the findings, which study the extent to
which empirical patterns in actual voting data can
restrict the range of representation that is possible
for a group in the numerical minority.

In the numerical feasibility section we will only
require that districts hew close to the standard of
equal population and that they are made of whole
units, such as towns and precincts. Because of the
central role of real voting data in this analysis, we
are bound to use precincts as the smallest building
blocks, since that is the smallest level at which
vote returns are available. In practice, the 2011 con-
gressional plan held 2119 precincts intact while
splitting 32, which means that fewer than 1.5%
were split. Using towns or precincts as unsplittable
building blocks does have some precedent in law
and practice. As a historical matter, the state consti-
tution of Massachusetts (2019) did require in Article
XVI that state councillors be elected from contigu-
ous districts that keep towns and city wards intact,
but this system of councillors is now obsolete.

There is a still-active contiguity requirement for
state legislative districts, and a rule to preserve
towns as much as is ‘‘reasonable,’’ but no formal
contiguity or unit-preservation requirement for con-
gressional districts. In fact, only 23 states have a
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contiguity requirement for congressional districts,
while 49 require contiguity for legislative districts.
Nonetheless congressional district contiguity is es-
sentially universal in practice.5 Shape constraints
will only be discussed in the geometric section of
the paper (the third section).

One possible interpretation of our fencing-out
findings is that they primarily identify the partisan
consequences in Massachusetts of putting a heavy
weight on the traditional districting principle that
guides districters to avoid splitting municipalities
in their plans. A rule requiring at least some
weight on respecting political boundaries is almost
as common as the contiguity rule, featuring in
some 19 states for congressional districts and 49
states for legislative districts.6 We do not think
that this is the extent of the conclusion that can
be appropriately drawn, however. First, as we
will develop below in the second section, there is
practically no change in the feasibility analysis
when moving from towns to precincts as building
blocks, even though there are more than six times
as many precincts. Second, the strength of the
findings here, which show that in fenced-out elec-
tions the most Republican-favoring collection of
precincts falls far short of ideal district size, all
but guarantees that under actual current districting
practices (contiguity, reasonable compactness, and
under 1.5% of precincts split) the fence-out would
remain in force.7 Thus we find robust support for
the broader conclusion that the representational
baseline for single-member districts is strongly
dictated by the specific political geography of
each time and place.

Relationship to previous literature

This article concerns a surprising relationship be-
tween the vote share V for a political party across
the districts of a polity and the seat share S that it is
possible to earn, as the district lines vary. It is worth
situating this work with respect to a sizeable political
science literature that broadly seeks to capture (V, S)
data points observed in actual elections by treating S

as a function of V whose graph is a curve.
Published in 1950, Kendall and Stuart (1950) is

the classic reference on the origins and status of the
so-called cube law that holds that S

1�S
¼ V

1�V

� �3
.

The cube law was still the dominant framework for
understanding the votes-to-seats relationship in the
1970s, with papers such as Taagepera (1973) seeking

generalizations. Gudgin and Taylor’s (2012) impor-
tant text in 1979 rebooted the cube law with an en-
hanced analytical derivation and some discussion of
the role of geography in deviations from its predic-
tions. However, the authors did not develop tools to
measure the contributions of spatial statistics. The
logic of the book circulated around the cube law
itself and the idea that deviations are reasonably de-

fined as partisan bias, whether attributable to spatial
distribution or gerrymandering.

Rae’s 1967 text avoids a fully cubic fixation but
devotes itself to a philosophically similar search
for rules and principles in the votes-to-seats conver-
sion effected by districts and other systems in the
form of twenty ‘‘Propositions.’’ Tufte’s 1973 article
is particularly theoretically rich and stakes out a
very influential new direction. Instead of a search
for a grand unified law or rule, Tufte makes the
case for curve fitting. He develops the mathematics
for a power relationship between vote odds and seat
odds but ultimately argues for fitting in the linear
class, with particular attention to the slope or
‘‘swing ratio’’ of the best-fit line to the (V, S) data.
(In a sense, efficiency gap falls in the Tufte tradition
but approaches bias with the opposite logic, declar-

ing an optimal slope of 2 and measuring deviation
from that line.) King and Browning (1987) is one ar-
ticle in an abundant literature taking up the curve-
fitting charge. The authors seek joint estimates of
the exponent and coefficient from (V, S) data points,
then develop statistical devices for introducing
second-order ‘‘disturbance terms.’’

Grofman et al. (1997) set out to do something
new, disaggregating the effects of geographic distri-
bution, turnout, and malapportionment. But their in-
gredients are once again only district vote totals and
seat shares, which makes them unable to learn what
is possible from a given distribution of votes as dis-
trict lines change. Recognizing this, they explain
that their distribution term will not distinguish

5District contiguity can be made somewhat complicated by water
and by smaller geographic units that are themselves disconnected,
but these issues are relatively easy to resolve in Massachusetts.
Districting rules may be found in the Massachusetts Constitution
(2019) and at Levitt (2019a), <http://redistricting.lls.edu/states-
MA.php>.
6See Levitt (2019b), <http://redistricting.lls.edu/where-tablefed
.php>.
7For a detailed analysis of the effects of raising and lowering the
priority on various districting criteria with another set of empir-
ical vote data, see also Duchin (2018).
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‘‘the chance effects of geography [from] intentional
gerrymandering’’ (461). More recently, a cluster of
papers has asked new kinds of questions about the
relationship between votes and seats that do probe
the effects of geographic distribution over sub-
units, starting with the observation in Calvo and
Rodden (2015) that the American political science
literature ‘‘has given surprisingly little attention to
the geography of party support’’ (791). That paper
is still premised on a functional approach to the
(V, S) relationship, but notably introduces a Gini co-
efficient (a statistic that is not geometric but numer-
ical in the sense of this paper) as part of a discussion
of predicting the degree of majoritarian bias.

Finally, two papers of Chen and Rodden (2013;
2016) seek to scope out typical districting outcomes
by generating samples of districting plans with
computers. However, they simultaneously use a
logit model that introduces significant noise to the
observed pattern of votes. Since their algorithms
do not sample exhaustively nor representatively,
these methods could not produce a finding that a
party is locked out of representation, even if the vot-
ing pattern is fixed. But by also adding significant
noise to the votes, the authors decouple their analy-
sis from the actual vote distribution even more
starkly. For instance, (Chen and Rodden 2016, fig.
8) shows the results of their simulated elections in
the 2008 presidential race in Massachusetts. They
find Republicans securing over 20% of the seats
on average, whereas we demonstrate below that
no district lines whatsoever could have produced

more than one-ninth (11.1%) Republican seats in
that particular race. A logit model, among other
probabilistic models of votes, is often employed to
represent predicted change or uncertainty from one
race to the next, but any such model risks obscuring
lockout effects, such as the ones found below in
Massachusetts Senate and presidential vote patterns
over a full ten-year Census cycle.

The chief novel contribution of the present article
is an extremely elementary technique that rigor-
ously establishes much stronger bounds than had
been previously available on the achievable partisan
outcomes for a given distribution of votes; in partic-
ular, we show for the first time that multiple actual
historical voting patterns featured a minority party
with over 30% of the votes but no possibility of se-
curing any seats at all, no matter how the lines are
drawn.8

ARITHMETIC OF REPUBLICAN
UNDERPERFORMANCE

In this section, we describe a method to deter-
mine theoretical bounds on the number of districts
with a Republican majority, given only the geo-
graphical units, their population, and their vote
totals for D and R candidates in a particular elec-
tion. For this part of the analysis we impose no spa-
tial constraints at all; we do not even require
contiguity, but would allow a district constructed
out of an arbitrary collection of towns or precincts
from around the state. We show, for example, that
even though George W. Bush received over 35%

of the two-way vote share against Al Gore, it is

mathematically impossible to construct a collection

of towns, however scattered, with at least 10% of

the population and where Bush received more col-

lective votes than Gore. (See Figure 4.)
Remark (The Boston Effect). Note that in Table 1

the town-level mean R share reliably overshoots the
statewide R share, while the precinct-level mean
errs in the other direction. To see why, recall that
there are 351 towns in the 2016 election, subdivided

Table 1. Statistics of Republican Two-Way Vote Share

in 13 Statewide Elections in Massachusetts

R share by town R share by precinct

Election R share mean variance mean variance

Pres 2000 35.2% 39.70% .0073 – –
Sen 2000 25.3%* 29.15% .0043 – –
Sen 2002 18.7% 20.29% .0019 17.43% .0028
Pres 2004 37.2% 39.99% .0093 34.53% .0140
Sen 2006 30.5% 33.23% .0076 27.62% .0118
Pres 2008 36.8% 39.00% .0117 33.85% .0179
Sen 2008 31.9% 34.40% .0094 28.91% .0141
Sen 2010 52.4% 53.78% .0201 47.76% .0307
Pres 2012 38.2% 41.05% .0145 34.85% .0227
Sen 2012 46.2% 49.19% .0168 42.64% .0274
Sen 2013 44.8% 48.89% .0217 41.84% .0311
Sen 2014 38.0% 41.14% .0141 34.22% .0205
Pres 2016 35.3% 40.17% .0165 33.04% .0235

Numbers are truncated rather than rounded. Lower-variance elections
are marked in gray.
*Libertarian vote share included with R in 2000 Senate race.

8Taagepera (1989) addresses the question of how much vote
share has been needed to produce the nonzero seat share, but
the study considers only observed outcomes of historical elec-
tions and does not deal with alternative district lines. That is, it
only looks at what has happened, and not at what is possible
with alternative districts.
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into 2,151 precincts. Boston is composed of 254 pre-
cincts; Springfield has 64; and most other towns have
fewer than 25 precincts, with 126 towns (more than a
third) having only one. This means Boston is an out-
lier in size, and it is also an outlier in the lopsidedness
of its Democratic voting majority. (In the 2016 pres-
idential election, Boston had only a 14.7% R two-
way vote share.)

The town-level averaging underweights Boston
because it is weighted equally to tiny towns like
Gosnold (population 75). The precinct-level results
overweight Boston because its average precinct
population is under 2,500, lower than the statewide
average of over 3,000. (Exact figures vary between
the two census cycles.) This accounts for the direc-
tion of error in the mean of each statistic relative to
the statewide share, which is naturally population-
weighted.

As Table 1 illustrates, the elections from 2000 to
2008 had consistently lower variance in their town-
and precinct-level vote shares than can be observed
since 2010. Below, we will connect that to the rep-
resentability of Republicans across these elections.

Numerical feasibility of R districts

Let’s first review the limitations on the power of
gerrymanderers that are produced by the numbers
alone. We begin with very simplified algebraic ar-
gument that we will refer to as the naive bounds

on gerrymandering. In an abstract districting system
with equal vote turnout in its districts, if Party X re-
ceives share 0 £ V £ 1 of the vote, its possible seat
share S is constrained to a range, with the actual out-
come depending on how the votes are distributed
across the districts. At its most ruthlessly efficient,
Party X could in principle have barely more than
half of the vote in certain districts and no vote in
the others, thus earning seat share up to 2V, or
twice its vote share. At minimum, a party with
less than half of the vote can be shut out entirely
by having less than half in each district; if Party X
has more than half of the vote, then its opponent
has a vote share of 1 – V and a maximum seat share
of 2(1 – V) = 2 – 2V, so the minimum seat share
for Party X is 1 – (2 – 2V) = 2V – 1. For example,
a party with 40% of the vote can get anywhere
from 0%–80% of the seats, while a party with
55% of the vote can get anywhere from 10%–
100% of the seats. The naive bounds would project
that districters could in principle arrange for

Beatty voters in the 2008 Senate race to convert
their 32% of the votes to 0%–64% of the seats.
In sum, we have

Naive Bounds on Gerrymandering :

0 � S < 2V‚ V � 1=2;

2V�1 � S � 1‚ V � 1=2:

�

But the naive bounds do not take into account
constraints introduced by the fixed number of dis-
tricts, by the variation in turnout, or by the discrete-
ness of the building blocks. The feasibility analysis
in this paper does account for all of those factors.
Table 2 shows that in Ed Markey’s 2013 special
election to the Senate, his opponent’s pattern in
obtaining 38% of the vote could not have earned
him any more than three district wins out of nine,
no matter how the districts were drawn, despite
the naive bounds that suggest up to six district
wins could have been possible. And even more
strikingly, though Jeff Beatty earned nearly a third
of the vote against Kerry in the Senate race of
2008, Beatty voters in that distribution are actually
locked out of representability entirely. The actual
observed turnout patterns, and the effect of the man-
date to build districts out of intact precincts, have
lowered Beatty’s ceiling from five districts out of
nine all the way to zero. Smaller building blocks
should mean more flexibility, but shrinking the
building blocks from towns to precincts didn’t in
this case help Beatty at all.

Here is our method for measuring feasibility in
our setup. Suppose that the ideal district size (state
population divided by number of districts) is
denoted by I. Then we will declare that it is numer-

ically feasible for a party to get k seats in a certain
election if there exists a collection of units (towns
or precincts) with population at least M = kI and in
which that party has a majority of the two-way
vote share. A feasibility bound for the party is the
largest such k that has been demonstrated.

By contrast, we will say that it is numerically in-

feasible for a party to get m seats in a given election
if there is proven to be no collection with population
at least M = mI and a majority for the party. An in-
feasibility bound is the smallest such m that has
been demonstrated.

We use a simple sorting algorithm to get feasibil-
ity and infeasibility bounds for the elections consid-
ered here, presenting the results in Table 2. Often,
but not always, the algorithm produces tight bounds,
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in the sense that the infeasibility bound is one more
than the feasibility bound.9

Our procedure is simply to greedily create the
largest R-majority collection possible from the cho-
sen geographic units (in our case, towns or pre-
cincts) by including them in order of Republican
margin per capita:

d=p¼ #Rvotes�#Dvotesð Þ= census population of unitð Þ:

The proof supporting this test of feasibility is
shown in the Appendix.

As stated above, we will fix the number of dis-
tricts at nine throughout the analysis, matching the
congressional apportionment at the time of writing.
This means that ideal district size is I = 705,455 for
races before 2010 and I = 727,514 for 2010–16.

We can make several observations from the table.
Moving to finer granularity of building blocks did
not have any impact on the feasibility bounds for
most elections. In two cases (Sen 2012 and Sen
2013), the precinct-level bounds are sharper: in both
cases, our method applied to towns produces an incon-
clusive result about a grouping of size 8I. With pre-
cincts, we find that the uncertainty is eliminated and
a grouping of size 8I is shown to be impossible.10

The 2016 presidential election is the only one for
which the finer granularity has shifted the feasibility
bounds. It is not possible to find (even scattered)
towns totaling three districts’ worth of population
which collectively favor Trump over Clinton, but it be-
comes possible if precincts are the building blocks. So

in that case, it is narrowly possible to achieve propor-
tional representation for Trump voters; note, however,
that this still falls far short of the seven Trump districts
that the naive bounds would have predicted to be ac-
cessible by extreme gerrymandering, and this is even
before the contiguity requirement is applied.

Numerical uniformity: The role of variance

In statistics, the mean of a set of numerical data re-
cords its average value, and the variance (or second
central moment) tells you how spread out the values
are around this mean. We claim that variance in the
vote share of a minority group (here, Republicans)
can be a primary explanatory factor for poor represen-
tational outcomes in districting. At one extreme, this
is obvious: if the variance is zero, then the preferences
in the state are completely uniform, and every single
unit has the same 35% (say) of Republican votes. In
this case, we can easily see that districting has no

Table 2. If Districts Were to Be Made Out of Towns or Out of Precincts, with No Regard

to Shape or Even Connectedness, How Many R or D Districts Could Be Formed?

Feasibility and Infeasibility Bounds Are Shown in This Table

Seat quota
R feas/infeas D feas/infeas

Election D candidate–R candidate R share (9 seats) Town Prec Town Prec

Pres 2000 Gore–Bush 35.2% 3.2 0/1 — 9/- —
Sen 2000 Kennedy–Robinson/Howell 25.3%* 2.3 0/1 — 9/- —
Sen 2002 Kerry–Cloud 18.7% 1.7 0/1 0/1 9/- 9/-
Pres 2004 Kerry–Bush 37.2% 3.4 1/2 1/2 9/- 9/-
Sen 2006 Kennedy–Chase 30.5% 2.8 0/1 0/1 9/- 9/-
Pres 2008 Obama–McCain 36.8% 3.3 1/2 1/2 9/- 9/-
Sen 2008 Kerry–Beatty 31.9% 2.9 0/1 0/1 9/- 9/-
Sen 2010 Coakley–Brown 52.4% 4.7 9/- 9/- 8/9 8/9
Pres 2012 Obama–Romney 38.2% 3.4 3/4 3/4 9/- 9/-
Sen 2012 Warren–Brown 46.2% 4.2 7/9 7/8 9/- 9/-
Sen 2013 Markey–Gomez 44.8% 4.0 7/9 7/8 9/- 9/-
Sen 2014 Markey–Herr 38.0% 3.4 3/4 3/4 9/- 9/-
Pres 2016 Clinton–Trump 35.3% 3.2 2/3 3/4 9/- 9/-

Lower-variance elections (see previous table) are marked in gray. Election winners shown in boldface; R share is with respect to two-way vote; seat
quotas are proportional share of nine seats.
*Libertarian vote share included with R in 2000 Senate race.

9It is possible that the feasibility bound actually overstates the
number of districts that can be built with a majority for the des-
ignated party—because the collection of size kI may not be
splittable into k appropriate collections of size I—but any infea-
sibility bound reflects a mathematically proven impossibility,
which drives all the conclusions in this article. See Appendix
for more details.
10Of course, the impossibility for precincts implies the impossi-
bility for towns—because towns are made up of precincts—even
though the sorting method did not discover this. We handle the
inconclusive cases for towns algorithmically in the Appendix.
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impact at all: every possible district will also have
35% R, and so will be won by Democrats.

Notably, the Gore/Bush election in 2000 had a
two-way R vote share of 35.2% and results in zero
possible R-majority districts. Meanwhile the Clin-
ton/Trump election had a nearly identical 35.3% R
vote share but produces the possibility for as
many as two districts (built from towns) with a
Trump majority.

The fundamental impact of variance is starkly il-
lustrated in the histograms showing the actual vote
patterns in Figure 1. A low-variance election with a
minority of R votes may have very few units with
R share over .5, which are precisely the building
blocks needed to build an R-majority district.

Looking back to Table 2 corroborates this finding:
7 out of 13 elections exhibit a mathematical impossi-
bility of representation or fall at least two seats short
of proportionality—completely independent of the
choices made by districters. These are precisely the
seven elections in which the vote totals show lower
variance, both at the town level and the precinct
level. In five of the elections, this effect is so pro-
nounced that the minority party is completely locked
out of any possibility of representation.

Varying variance

To further probe these outcomes, we generated
datasets with similar mean vote share to the 2000
and 2016 presidential elections (Figure 2), adjusting
the variance of R-share per unit while maintaining
voter turnout and population at actual levels.

We assigned R two-way vote shares chosen from
a truncated skewed normal distribution with a set
mean of 35.25% (the average of the Gore/Bush
and Clinton/Trump R vote share) and variances
ranging from 0.0020 to 0.0320, covering the range
actually observed in Table 1.11 From those datasets,
we re-ran our procedure to produce bounds on the
number of possible R seats.

The results, plotted in Figure 3, strongly corrob-
orate the hypothesis that feasible representation is
controlled by variance in vote share. In fact, a
high enough variance can be seen to make it numer-
ically feasible to overperform proportionality.

GEOMETRY OF REPUBLICAN
UNDERPERFORMANCE

We now consider the spatial aspects of the vote
distribution with respect to the possibilities for dis-
trict formation.

FIG. 1. These histograms show the distribution of Republican vote share by town in the 2000 and 2016 Massachusetts presiden-
tial contests, illustrating that these two elections had very nearly the same mean but different levels of variance. (The town-level
variance is .0074 and .0165, respectively.) Color images are available online.

11We used the scipy python library skewnorm.rvs function to
generate random numbers from a skewed normal distribution
with the chosen location, scale, and shape variable. Truncation
means that any value outside of the [0,1] range was replaced by
another value drawn from the same distribution. This truncation
process changes the mean and variance of the distribution being
produced, so we ran it iteratively, adjusting the mean and vari-
ance until the desired parameters were produced. Throughout, a
shape variable of -8 was selected to best capture the observed
distributions in historical elections. The resulting distributions
can be seen in Figure 2.
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Lack of Republican enclaves

Compounding the numerical effects described
above is the spatial scatter of the areas preferring
Republicans in Massachusetts. To illustrate this,
consider forming a grouping of towns by collecting
them in order of their R margin per capita d / p, as
above, until the collection is large enough to be a
valid district. The result is a dramatically discontig-
uous assemblage spanning nearly the full state (Fig-
ure 4). A similar pattern can be observed in 2006
Senate returns.

In fact, very few of the building blocks seen in
the figures are R-favoring at all. Strikingly, only
an astonishing nine of 2,166 precincts in 2006 re-

cord a Chase majority.12 Only 31 out of 351 towns
had a G.W. Bush majority in 2000. The largest
Bush-favoring collection of towns—which boasts
an aggregate one-vote Bush margin—only has a
population of 426,304, well short of the ideal dis-
trict size of over 700,000.

Clustering

The voting data used here makes it possible to
test whether, in addition to increased variance, the
election results after 2010 exhibit more spatial clus-
tering than before. To assess this we use an index
called a capy (or clustering propensity) score,
which closely resembles well-established assorta-
tivity scores in network science, generalized for
use with demographic data.13

The geographical units that make up a jurisdiction
have populations of different sizes and compositions.
In geographical unit vi, we use xi and yi to denote the
populations from group X and group Y in that unit.
We record the X population data as an integer-valued
vector x = (xi, . , xn) with entries for each unit’s pop-
ulation, and likewise write y for the Y population fig-
ures. If unit vi is adjacent to unit vj, we write i: j. Then

FIG. 2. Skewed truncated normal distributions are shown here with the same mean as the observed results. These were used to
generate election data to test the hypothesis that vote datasets with higher variance would achieve higher levels of numerically
feasible representation. Color images are available online.

FIG. 3. Higher-variance datasets reliably produce greater
numbers of feasible seats, even with the vote share held con-
stant. This figure shows the results of three trials with the pro-
tocol described above; the results are indistinguishably close.
Color images are available online.

12In fact, the real number is almost certainly eight precincts.
The official results record a large Chase majority in Medford
Ward 5 Precinct 2, which is not consistent with the voting be-
havior of that precinct in any other election on record, including
the primary that year. Medford town officials were unable to
provide corrected data.
13For details, see Alvarez et al. (2018) for a comparative math-
ematical survey of scores of clustering and segregation, and
Newman (2003) for a survey of network science that includes
assortativity.
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let hx‚ yi :¼
P

i

xiyi þ
P
i�j

xiyj þ xjyi. The idea is that

hx‚ yi is a close approximation to the number of indi-
viduals of X type living next to an individual of Y
type, either in the same geographical unit or in neigh-
boring units.14 With this, we define

Hðx‚ yÞ :¼ 1

2

hx‚ xi
hx‚ xi þ hx‚ yi þ

hy‚ yi
hy‚ yi þ hx‚ yi

� �
:

By construction, this score varies from 0 to 1
and measures the tendency of each of the two
kinds of population to live next to another member
of their own group, rather than the other. A per-
fectly uniform distribution where the xi and the yi

were constant would earn the score H = 1/2, and a
perfectly clustered distribution where the xi = 0 in
one region and the yi = 0 in the complementary re-
gion would tend towards H = 1 in a sufficiently
large network.

Table 3 shows the observed H(R,D) clustering re-
sults for Republican compared to Democratic vot-
ers. For each election, we create two comparison
points by experiment: the uniform H score is the
highest score recorded in 30 trials in which Repub-
lican voters were scattered randomly under a uni-
form distribution until reaching the statewide R
share observed in that election. The clustered H

score is produced by applying a dynamical step
that moves votes into a configuration with higher
tendency for neighbors to have the same vote.15

As a general matter, we see that the H scores from
actual election data closely resemble the uniform
trials, and that there is only a mild upward trend
in the H scores over time. In some cases, there are
interesting comparisons, such as in comparing the
presidential outcomes in 2000 and 2016—there,
we can see that Trump voters are appreciably
more likely to live next to each other than Bush vot-
ers were, but still far from highly clustered.

There is a one-way relationship between numer-
ical and geometric uniformity: if there is low

FIG. 4. These figures show the voting pattern for Republicans George W. Bush in the 2000 presidential race (left, by town) and
Kenneth Chase in the 2006 senate race (right, by precinct). The darkest red units favored the Republican outright, and the lighter
red shade shows the most Republican-favorable units available in assembling enough population for a congressional district. These
quasi-districts still preferred Gore and Kennedy, respectively, by comfortable margins. Color images are available online.

Table 3. Clustering Scores for Republican versus

Democratic Voters at the Town Level in Each

of the Elections Discussed in This Article

Election R share Uniform H Observed H Clustered H

Pres 2000 35.2% .5001 .5135 .9456
Sen 2000 25.4%* .5000 .5063 .9374
Sen 2002 18.7% .5001 .5035 .8982
Pres 2004 37.3% .5000 .5182 .9351
Sen 2006 30.6% .5001 .5171 .9537
Pres 2008 36.8% .5000 .5210 .9591
Sen 2008 32.0% .5000 .5181 .9513
Sen 2010 52.4% .5001 .5329 .9587
Pres 2012 38.2% .5000 .5243 .9268
Sen 2012 46.2% .5000 .5272 .9597
Sen 2013 44.9% .5002 .5366 .9492
Sen 2014 38.0% .5001 .5276 .9557
Pres 2016 35.3% .5000 .5344 .9480

We show the score for a uniform trial, the actual observed votes, and a
highly clustered trial, each with the statewide share that corresponds ac-
curately to the given election. The numbers are truncated (not rounded)
after four decimal places.
*Libertarian vote share included with R in 2000 Senate race.

14This approximation approaches equality as the populations
get large. For details, see Alvarez et al. (2018).
15This belongs to an extremely standard toolkit from physics
(cf. Glauber dynamics in the Ising model); replication code
can be found in our GitHub repo, Metric Geometry and Gerry-
mandering Group (2019).
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variance in observed partisan shares by unit, then
all units tend to have the same shares, so there is
necessarily no major spatial pattern to partisan
preference. However, high variance in partisan
share can occur in a way that is strongly spatially
clustered (such as if there are pronounced en-
claves) or in a way that is not (such as if there is
a checkerboard pattern of strong support for each
party). The findings here strongly support a con-
clusion that numerically uniform vote patterns cre-
ate obstructions to representation for a group in
the numerical minority. Further work is needed to
study the spatial determinants of representability
in the high-variance case.

CONCLUSION

The numerical and geometric/spatial distribution
of voter preferences, and the local rules of redistrict-
ing, restrict and skew the possibilities for represen-
tation in an extremely complex way that one-size-
fits-all normative ideals fail to capture. There has
been significant recent progress attacking the math-
ematical challenges of identifying the representa-
tional baseline. New tools, such as the ones
presented here, make it increasingly possible to sep-
arate the effects of choosing district boundaries
from the consequences of political geography. A
strong message is emerging: the range of possible
representational outcomes under valid redistricting
is not always in keeping with the range that classic
modeling approaches have predicted from the vote
share alone. Any meaningful claim of gerrymander-
ing must be demonstrated against the backdrop of
valid alternative districting plans, under the con-
straints of law, physical geography, and political ge-
ography that are actually present in a jurisdiction.
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Appendix: Rigorous Feasibility Bounds

Suppose you have a list of units with corresponding
populations pi and R margins di = ri – di, the number of
R votes minus the number of D votes. Re-index so that
they are ordered from greatest to least by margin per
capita:

d1=p1 � d2=p2 � ::: � dn=pn

We will call a collection of units S a grouping, and let
p(S) and d(S) be its population and R margin, found by
summing the pi and di for its units. Let Dk be the group-
ing indexed by {1, . , k}. Let K be the smallest integer
k for which d(Dk) £ 0. This means that DK–1 has a col-
lective R majority, but if you add the Kth unit you get a
grouping DK that fails to have an R majority.

Theorem 1. With the notation above, let M be any
positive integer.

Case 1. M £ p(DK–1). There exists an R-majority
grouping of size at least M.

Case 2. p(DK–1) < M £ p(DK). Inconclusive: such a
grouping may or may not exist.

Case 3. p(DK) < M. There does not exist an R-
majority grouping of size at least M.

Proof. In Case 1, it is clear that a Republican group-
ing can be created, because DK–1 is a Republican-
majority grouping of sufficient size.

We present examples to illustrate that Case 2 is in-
conclusive.

For both examples, fix M = 13. We have K = 2 in
both examples because d(D1) = 8 > 0 and d(D2) = 0.
Both fall under Case 2 because p(D1) = 8 and
p(D2) = 18, while M = 13. In the left-hand example
there exists an R-majority grouping, made by putting
together units 1 and 3 to form a grouping with d = 3
and population 13. But in the right-hand example
there is none, which is easily confirmed by consider-
ing all of the combinations.

Finally, in Case 3, we have p(DK) < M.

Claim. Let S = DK and suppose that p(S) < M. Then
for any S0 � f1‚ . . . ‚ ng,

pðS0Þ> pðSÞ ) dðS0Þ< dðSÞ:

The claim asserts that DK has the optimal R margin
among all groupings with at least as much popula-
tion. Since we seek a grouping larger than p(DK)
and since d(DK) £ 0, this implies that a R-majority
grouping cannot be formed. So it just remains to
prove the claim.

Let A = S¢yS and R = SyS¢ denote the sets of indi-
ces added to and removed from S, respectively, to
make S¢. Since A and R are disjoint, and we have as-
sumed that p(S¢) > p(S), it follows that p(A) > p(R).

Let l ¼ maxfdi

pi
ji 2 Ag and let l0 ¼ minfdi

pi
ji 2 Rg.

Note that, since R � S ¼ f1‚ . . . ‚ Kg and A � Sc ¼
fK þ 1‚ . . . ‚ ng and the di

pi
are non-increasing, we

have m £ m’.
Note that every unit i 62 S has a Democratic major-

ity (di < 0). This is because Republican-majority units
are added to S in decreasing order of di

pi
until the overall

margin satisfies d £ 0, so by construction every unit
with a Republican majority is in S. It follows, since
A � Sc, that m < 0.
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We have m $ p(R) > m $ p(A) because p(R) < p(A) and
m < 0. Also, m¢ $ p(R) ‡ m $ p(R). So, transitively, m¢ $
p(R) > m $ p(A).

Note that

l0 � pðRÞ ¼
X
i2R

l0 � pi �
X
i2R

di

pi

� pi ¼ dðRÞ:

Similarly m $ p(A) ‡ d(A). Combining our inequal-
ities, we have shown that d(R) > d(A). It follows that
d(S) > d(S¢), as claimed. This completes the proof of
the claim and the theorem.

Note that Case 2, the inconclusive situation, is more
likely when there are units that are large relative to
the population threshold, because the gap between
p(DK–1) and p(DK) is the population of the Kth unit.
So if we consider the formation of districts, we are
more likely to get an inconclusive result with large
units like counties or towns and less likely with
smaller units like blocks or VTDs/precincts.

This theorem suggests an algorithm for computing
feasibility bounds that is no more complex than sort-
ing, which makes it fast and efficient. The answers

are not completely satisfying, however, because of
the possibility of an inconclusive finding (Case 2)
and because the existence of a grouping with an R
majority and population that is m times the size of
an ideal district does not imply that it can be split
into m sub-groupings of equal size, each with R major-
ities. However, a refined algorithm that could close
those loopholes is known to have forbidding computa-
tional complexity, because eliminating the inconclu-
sive case is equivalent to the 0 – 1 knapsack problem,
which is NP-complete.A1 Sorting into m collections
while tracking both weight and value, which would
close the second loophole, is strictly harder.

Some problems may be solvable in reasonable time
even when we lack an algorithm with a polynomial
bound. We implemented a pseudo-polynomial dy-
namic programming knapsack algorithm, which ascer-
tained in under a minute that the correct feasibility/
infeasibility bounds in Senate 2012 and Senate 2013
were 7/8, removing the ambiguity left by the simple
sorting algorithm in Table 2. However, we were unable
to find or quickly devise a variant for sub-sorting in the
six elections where multiple R districts are numeri-
cally feasible.

A1‘‘Knapsack Problem—Definition,’’ Wikipedia (2019), <https://
en.wikipedia.org/wiki/Knapsack_problem#Definition>. For a
formal reference, see, for instance, the classic Karp (1972).
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